\(\int \frac {\cos ^2(c+d x) \cot ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [640]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 73 \[ \int \frac {\cos ^2(c+d x) \cot ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {x}{a^2}-\frac {\text {arctanh}(\cos (c+d x))}{a^2 d}-\frac {\cot (c+d x)}{a^2 d}-\frac {\cot ^3(c+d x)}{3 a^2 d}+\frac {\cot (c+d x) \csc (c+d x)}{a^2 d} \]

[Out]

-x/a^2-arctanh(cos(d*x+c))/a^2/d-cot(d*x+c)/a^2/d-1/3*cot(d*x+c)^3/a^2/d+cot(d*x+c)*csc(d*x+c)/a^2/d

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {2954, 2952, 3554, 8, 2691, 3855, 2687, 30} \[ \int \frac {\cos ^2(c+d x) \cot ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a^2 d}-\frac {\cot ^3(c+d x)}{3 a^2 d}-\frac {\cot (c+d x)}{a^2 d}+\frac {\cot (c+d x) \csc (c+d x)}{a^2 d}-\frac {x}{a^2} \]

[In]

Int[(Cos[c + d*x]^2*Cot[c + d*x]^4)/(a + a*Sin[c + d*x])^2,x]

[Out]

-(x/a^2) - ArcTanh[Cos[c + d*x]]/(a^2*d) - Cot[c + d*x]/(a^2*d) - Cot[c + d*x]^3/(3*a^2*d) + (Cot[c + d*x]*Csc
[c + d*x])/(a^2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2954

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e +
f*x])^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rule 3554

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \cot ^2(c+d x) \csc ^2(c+d x) (a-a \sin (c+d x))^2 \, dx}{a^4} \\ & = \frac {\int \left (a^2 \cot ^2(c+d x)-2 a^2 \cot ^2(c+d x) \csc (c+d x)+a^2 \cot ^2(c+d x) \csc ^2(c+d x)\right ) \, dx}{a^4} \\ & = \frac {\int \cot ^2(c+d x) \, dx}{a^2}+\frac {\int \cot ^2(c+d x) \csc ^2(c+d x) \, dx}{a^2}-\frac {2 \int \cot ^2(c+d x) \csc (c+d x) \, dx}{a^2} \\ & = -\frac {\cot (c+d x)}{a^2 d}+\frac {\cot (c+d x) \csc (c+d x)}{a^2 d}-\frac {\int 1 \, dx}{a^2}+\frac {\int \csc (c+d x) \, dx}{a^2}+\frac {\text {Subst}\left (\int x^2 \, dx,x,-\cot (c+d x)\right )}{a^2 d} \\ & = -\frac {x}{a^2}-\frac {\text {arctanh}(\cos (c+d x))}{a^2 d}-\frac {\cot (c+d x)}{a^2 d}-\frac {\cot ^3(c+d x)}{3 a^2 d}+\frac {\cot (c+d x) \csc (c+d x)}{a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.57 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.70 \[ \int \frac {\cos ^2(c+d x) \cot ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\left (1+\cot \left (\frac {1}{2} (c+d x)\right )\right )^4 \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (6 \cos (c+d x)-2 \cos (3 (c+d x))+12 \left (c+d x+\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin ^3(c+d x)-6 \sin (2 (c+d x))\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{96 a^2 d (1+\sin (c+d x))^2} \]

[In]

Integrate[(Cos[c + d*x]^2*Cot[c + d*x]^4)/(a + a*Sin[c + d*x])^2,x]

[Out]

-1/96*((1 + Cot[(c + d*x)/2])^4*Sec[(c + d*x)/2]^2*(6*Cos[c + d*x] - 2*Cos[3*(c + d*x)] + 12*(c + d*x + Log[Co
s[(c + d*x)/2]] - Log[Sin[(c + d*x)/2]])*Sin[c + d*x]^3 - 6*Sin[2*(c + d*x)])*Tan[(c + d*x)/2])/(a^2*d*(1 + Si
n[c + d*x])^2)

Maple [A] (verified)

Time = 0.36 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.34

method result size
parallelrisch \(\frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )-\left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-6 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 d x +24 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+9 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-9 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )}{24 d \,a^{2}}\) \(98\)
risch \(-\frac {x}{a^{2}}-\frac {2 \left (3 \,{\mathrm e}^{5 i \left (d x +c \right )}-6 i {\mathrm e}^{2 i \left (d x +c \right )}+2 i-3 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{3 a^{2} d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{3}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d \,a^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d \,a^{2}}\) \(105\)
derivativedivides \(\frac {\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-2 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {3}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-16 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{2}}\) \(110\)
default \(\frac {\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-2 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {3}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-16 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{2}}\) \(110\)
norman \(\frac {-\frac {1}{24 a d}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}+\frac {\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}{6 d a}-\frac {\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )}{6 d a}-\frac {\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}+\frac {\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )}{24 d a}-\frac {x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {3 x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {5 x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {7 x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {7 x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {5 x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {3 x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d a}-\frac {5 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}-\frac {3 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {25 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d a}-\frac {5 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d a}-\frac {13 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d a}-\frac {11 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{2}}\) \(433\)

[In]

int(cos(d*x+c)^6*csc(d*x+c)^4/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/24*(tan(1/2*d*x+1/2*c)^3-cot(1/2*d*x+1/2*c)^3-6*tan(1/2*d*x+1/2*c)^2+6*cot(1/2*d*x+1/2*c)^2-24*d*x+24*ln(tan
(1/2*d*x+1/2*c))+9*tan(1/2*d*x+1/2*c)-9*cot(1/2*d*x+1/2*c))/d/a^2

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.90 \[ \int \frac {\cos ^2(c+d x) \cot ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {4 \, \cos \left (d x + c\right )^{3} + 3 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 3 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 6 \, {\left (d x \cos \left (d x + c\right )^{2} - d x + \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) - 6 \, \cos \left (d x + c\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d\right )} \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^4/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(4*cos(d*x + c)^3 + 3*(cos(d*x + c)^2 - 1)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 3*(cos(d*x + c)^2 -
 1)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 6*(d*x*cos(d*x + c)^2 - d*x + cos(d*x + c))*sin(d*x + c) - 6*c
os(d*x + c))/((a^2*d*cos(d*x + c)^2 - a^2*d)*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \cot ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**4/(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 176 vs. \(2 (71) = 142\).

Time = 0.31 (sec) , antiderivative size = 176, normalized size of antiderivative = 2.41 \[ \int \frac {\cos ^2(c+d x) \cot ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\frac {\frac {9 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {6 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {48 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} + \frac {24 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} + \frac {{\left (\frac {6 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {9 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{3}}{a^{2} \sin \left (d x + c\right )^{3}}}{24 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^4/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/24*((9*sin(d*x + c)/(cos(d*x + c) + 1) - 6*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + sin(d*x + c)^3/(cos(d*x + c
) + 1)^3)/a^2 - 48*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^2 + 24*log(sin(d*x + c)/(cos(d*x + c) + 1))/a^2 +
 (6*sin(d*x + c)/(cos(d*x + c) + 1) - 9*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1)*(cos(d*x + c) + 1)^3/(a^2*sin
(d*x + c)^3))/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.88 \[ \int \frac {\cos ^2(c+d x) \cot ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\frac {24 \, {\left (d x + c\right )}}{a^{2}} - \frac {24 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{2}} + \frac {44 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 6 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1}{a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}} - \frac {a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 6 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 9 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{6}}}{24 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^4/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-1/24*(24*(d*x + c)/a^2 - 24*log(abs(tan(1/2*d*x + 1/2*c)))/a^2 + (44*tan(1/2*d*x + 1/2*c)^3 + 9*tan(1/2*d*x +
 1/2*c)^2 - 6*tan(1/2*d*x + 1/2*c) + 1)/(a^2*tan(1/2*d*x + 1/2*c)^3) - (a^4*tan(1/2*d*x + 1/2*c)^3 - 6*a^4*tan
(1/2*d*x + 1/2*c)^2 + 9*a^4*tan(1/2*d*x + 1/2*c))/a^6)/d

Mupad [B] (verification not implemented)

Time = 9.50 (sec) , antiderivative size = 261, normalized size of antiderivative = 3.58 \[ \int \frac {\cos ^2(c+d x) \cot ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-6\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+6\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+9\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-9\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+48\,\mathrm {atan}\left (\frac {\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+24\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,a^2\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3} \]

[In]

int(cos(c + d*x)^6/(sin(c + d*x)^4*(a + a*sin(c + d*x))^2),x)

[Out]

(sin(c/2 + (d*x)/2)^6 - cos(c/2 + (d*x)/2)^6 - 6*cos(c/2 + (d*x)/2)*sin(c/2 + (d*x)/2)^5 + 6*cos(c/2 + (d*x)/2
)^5*sin(c/2 + (d*x)/2) + 9*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2)^4 - 9*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/
2)^2 + 48*atan((cos(c/2 + (d*x)/2) - sin(c/2 + (d*x)/2))/(cos(c/2 + (d*x)/2) + sin(c/2 + (d*x)/2)))*cos(c/2 +
(d*x)/2)^3*sin(c/2 + (d*x)/2)^3 + 24*log(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))*cos(c/2 + (d*x)/2)^3*sin(c/2 +
 (d*x)/2)^3)/(24*a^2*d*cos(c/2 + (d*x)/2)^3*sin(c/2 + (d*x)/2)^3)